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Stochastic formulation of sampling dynamics in generalized ensemble methods
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The fundamental relations of the sampling process in the multicanonical ensemble and simulated tempering
have been studied in the expanded ensembles formalism. The simulated tempering is identified as the multi-
canonical sampling with the generalized weight determined by a Laplace transform of the temperature weight.
The characteristic dynamics of both sampling methods has been verified in the stochastic formulation of the
sampling process. Our study gives a necessary and sufficient condition for the weights to realize a uniform
sampling in the energy and temperature spaces. Based on the stochastic model, robust force biased iteration
schemes have been proposed to allow automatic determinations of uniform sampling weights.
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I. INTRODUCTION

Potential energy surfaces of many important physical p
cesses such as protein folding@1#, cluster melting@2#, and
spin glasses@3# are dominated by a large number of loc
minima separated by high-energy barriers. Thus conventio
Monte Carlo or molecular dynamics~MD! simulation will
become trapped in one of local energy basins and fai
sample thermally accessible phase space. To overcome
quasiergodicity occurring in the simulation of rough ener
landscapes, several sampling algorithms have been prop
during the past decade@4–10#. These include the paralle
tempering or replica exchange method@4#, umbrella sam-
pling @5#, generalized ensembles methods of multicanon
sampling@6,7# and simulated tempering~ST! @8,9#, and ran-
dom walk algorithm@10#. Among them, the generalized en
semble methods~GEMs! have been widely applied to bio
molecules simulations as effective tools to alleviate multi
minima problem with substantial enhancements of con
mational samplings@11#.

The characteristic feature of these generalized ensem
methods is that they use non-Boltzmann sampling weig
which are adaptively modified to smooth the PES for a u
form sampling in the energy and temperature spaces.
multicanonical sampling~MUCA! @6# or an equivalent en-
tropic sampling@7# generating a random walk on the ener
space has been proved to be very effective in studying fi
order phase transitions of spin systems@12# and folding
problems of small peptide systems@13#. Another effective
simulation technique of the GEMs is the ST@8# or expanded
ensemble method@9#, which samples states with a uniform
distribution in the temperature space. The similarities a
effectiveness of various generalized ensemble methods
been examined for protein folding simulations@14#. How-
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ever, in spite of many impressive achievements, the fun
mental dynamics of the GEMs has not been clearly und
stood since the weights, which play a critical role in t
sampling, are not knowna priori. Usually, the determination
of the weights requires an iterative procedure, which
sometimes very tedious and time consuming in large s
systems@15#.

In the present study, we reveal that uniform sampli
weights of the MUCA and ST are determined by the sa
functional relationship characterizing the average energy
temperature. Our finding relies on a unified formulation
the sampling process in the MUCA and ST within the e
panded ensembles treating both energy and temperatu
dynamical variables. The sampling process of the MUCA h
been shown to be equivalent to the one of the ST by rela
the temperature weight to the multicanonical weight. T
simulated tempering is identified as the multicanonical sa
pling with the generalized weight determined by a Lapla
transform of the temperature weight. Next, the characteri
sampling dynamics of the GEMs has been analyzed in te
of a Langevin stochastic process by considering the samp
process as a stochastic diffusion on the energy and temp
ture spaces. Our stochastic models reveal that the itera
refinements of the weights in the GEMs correspond to
dynamical processes approaching a free Brownian motio
the energy and temperature spaces via the cancellation
deterministic forces of governing Langevin equations. Ba
on this analysis, we propose robust force biased itera
schemes to allow an automatic determination of unifo
sampling weights in the GEMs without any intervention
the simulation. The validation of our theory has been tes
in a folding simulation of five residues peptide of Me
Enkephalin.

In Sec. II, a unified formulation of the sampling process
the MUCA and ST has been presented within the expan
ensembles. The formal equivalence of the MUCA and ST
been demonstrated by relating the temperature weight to
©2004 The American Physical Society01-1
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multicanonical weight. In Sec. III, the characteristic sa
pling dynamics of the GEMs has been investigated in
stochastic formulation of the sampling process. Novel ite
tion schemes have been proposed for the determinatio
uniform sampling weights in the energy and temperat
spaces. In Sec. IV, detailed numerical results and discuss
are presented in a folding simulation of Met-Enkephalin.
nally, a conclusion and brief summary are added to Sec.

II. EXPANDED ENSEMBLES FORMULATION

One of the critical differences of the MUCA and ST is
dynamical variable in the sampling process. In the MUC
the energy is a dynamical variable, while the temperat
plays the same role in the ST. Thus, to formulate the MU
and ST in a unified form, we need new ensembles trea
both energy and temperature as dynamical variables sim
neously. For this purpose, we borrowed a key idea fr
Lyubartsev’s expanded ensembles formalism. In the orig
paper@9#, Lyubartsevet al., have constructed the canonic
expanded ensembles by considering the reciprocal temp
ture b i51/kBTi as a parameter for the subensembles, wh
gives the expanded partition function of

J~N,V!5(
i

Q~N,V,b i !Fi , ~1!

whereQ(N,V,b i) denotes the canonical partition function
b i . For each subensemblei, the positive weightFi has been
assigned to adjust a relative population. Usually, two type
MC moves occur in the expanded ensembles:~1! canonical
sampling at a fixed value ofb i and ~2! trial transition be-
tween neighboringb i . The transitions between the sube
sembles take place with the acceptance ratio of

min@1,e(b i2b j )EFj /Fi #. ~2!

Then, the occupation probability ofPi5exp$2biAi%Fi /J,
b iAi52 ln Q(N,V,bi), can be determined by accumulating
histogram of visits tob i state. Once a broad sampling
achieved between the subensembles with a high statis
free energy difference between the subensemblej and refer-
ence 0 can be calculated asb jAj2b0A05 ln P0 /Pj
2ln F0 /Fj . However, the temperature weightFi is not
known a priori and has to be determined by prelimina
iterative simulations before long production run.

In the present study, the expanded ensembles forma
has been generalized to a continuous limit ofb i by introduc-
ing the temperature weight functionF(b) as

J~N,V!5E E dbdE V~E!e2bEF~b!, ~3!

where we used the relationQ(N,V,b)5*dEV(E)e2bE,
V(E) being the density of state of the system. In the co
tinuous expanded ensembles, the system with the config
tion (x,b) is populated by a product of the energy and te
perature weights asP(x,b)5e2bE(x)F(b)/J. From a
detailed balance condition, the transition between (x,b) and
(x8,b8) occurs with the probability of
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min@1, e2b8E(x8)1bE(x)F~b8!/F~b!#. ~4!

The acceptance ratio of Eq.~4! reduces to Eq.~2! when
E(x)5E(x8), while it is the same as the Metropolis criterio
with b5b8. The occupation probability of the system
(E,b) is determined by taking into account the density
state asP(E,b)5V(E)e2bEF(b)/J.

Our basic idea is to regard the expanded ensembles of
~3! as the multicanonical sampling associated with a n
Boltzmann weightW(E) as

J~N,V!5E dE V~E!W~E!, ~5!

whereW(E)5L@F# is a Laplace transform ofF defined as
*db e2bEF(b). Then, the probability density function
~PDF! for the energy is given by

P~E!5V~E!L@F#/J5e2b0F(E)/J, ~6!

whereF(E)5a(E)2T0Sm(E), Sm(E) being the microca-
nonical entropy defined bykBln V(E). Here we defined the
multicanonical potentiala(E)521/b0ln W(E), b0 being
the arbitrarily defined temperature. The physical implicati
of F(E) is the effective free energy density associated w
W(E), leading to the partition function ofJ(N,V)
5*dEe2b0F(E).

On the other hand, the PDF for the inverse temperatur
obtained by integratingP(E,b) with respect to an energy a

P~b!5L@V#F~b!/J5e2C(b)/J, ~7!

whereL@V# is the Laplace transform of the density of sta
defined as*dbV(E)e2bE, andC(b) is the effective poten-
tial of bA(b)2 lnF(b), A(b) being the Helmholtz free en
ergy. The interesting observation in Eq.~7! is that the
Laplace transform ofV(E) plays a role of the density o
state in the temperature sampling. In a different way, Ha
mannet al. also pointed out that the temperature weight
related to a Laplace transform of the density of state
F 215L@V# when the sampling in the temperature spa
becomes uniform@14#.

The reformulation of the MUCA and ST in the expand
ensembles provides a clear picture on how does the temp
ture weight invoke a non-Boltzmann weight in the ener
space. Conversely, an arbitrary energy weight can be dec
posed to a mixture of the canonical ensembles parametr
by a temperature weight. The Gibbs-Boltzmann weig
WGB5e2b0E is given by ad function distributionF(b)
5d(b2b0) (b0.0). On the other hand, Lyubartsev’s e
panded ensembles are reconstructed byF(b)5( iFid(b
2b i). Recently, the Tsallis weight proposed in nonextens
statistical mechanics@16# has been applied to biomolecule
simulations as one effective tool improving conformation
sampling efficiency@17–20#. In contrast to the exponentia
suppression ofWGB , the Tsallis weight shows an asymptot
algebraic decaying in the energy space as

Wq~E!5@12~12q!b0E!] 1/(12q), ~8!
1-2
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whereq is the Tsallis entropy index. Dynamical origin of th
Tsallis weight has been related to the temperature fluc
tions withx2 distribution@21#. This can be easily verified in
our expanded ensembles formulation by denoting a follo
ing transformation of

Wq~E!5A~a,p!L@bpexp$ab%#5L@Fq# ~9!

with p51/(q21)21 (p.21) and 1/a5(12q)b0. Here
A(a,p)5@1/G(11p)#(2a)11p, G being the Gamma func
tion, andFq is the Tsallis temperature weight. Note that t
dynamical origin of the Tsallis weight is naturally involve
with temperature fluctuations in our formulation via th
transformation ofW(E)5L@F(b)#.

III. STOCHASTIC FORMULATION OF GENERALIZED
ENSEMBLE METHODS

A. Multicanonical sampling

Since the MUCA can be considered as a canonical s
pling associated with the multicanonical potentiala(E) in
Eq. ~6!, the energy trajectory can be generated to sample
ensemble ofW(E) by constant temperature MD with
scaled Newton’s equation@22#

ṗi52
]a~E!

]qi
5

]a~E!

]E
f i5n~E!f i , ~10!

whereqi , pi , and f i correspond to the coordinate, mome
tum, and force of the particlei on the potential energyE,
respectively. Here,n(E) is the force scaling function, which
reduces ton(E)51 in the canonical ensemble ofa(E)
5E. The sampling dynamics of MUCA can be mapped in
a one-dimensional stochastic diffusion on the external po
tial F(E) modeled by a Langevin equation of@23#

] tE5G~E!1AkBT0 z~ t !, ~11!

where

G~E!52]EF~E!5nS~E!2n~E! ~12!

andnS(E)5T0 /TS(E), TS(E) being the statistical tempera
ture defined in microcanonical ensemble as@]Sm /]E#21. In
Eq. ~11!, thermal fluctuations are approximated by the un
ased d correlated Gaussian white noise with^z(t)z(t8)&
52d(t2t8). The stationary PDF of Eq.~11! is obtained as
P(E)5eb0*G(E8)dE8 by considering a Fokker-Planck equ
tion associated with a Langevin equation.

In Eq. ~12!, the deterministic forceG(E) has two contri-
butions, which are the system-dependent entropic fo
nS(E) and weight-dependent forcen(E). The uniform en-
ergy sampling in the MUCA is realized from a generation
a random walk whenG(E)50 by coinciding n(E) with
nS(E). However, the force scaling functionn(E) has to be
determined iteratively since the microcanonical entro
Sm(E) is not knowna priori. The rearrangement of Eq.~12!
gives an iteration scheme for the force scaling function a

n i 11~E!5n i~E!1G i~E!, ~13!
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wherei means the iteration step@24#. Notifying thatn(E) is
the external force driven by the weight in Eq.~12!, the sam-
pling in MUCA can be interpreted as the dynamical proce
approaching a free Brownian motion via the iterative canc
lations of G(E). Conventional potential biasing iteratio
scheme@22# is obtained by integrating both sides of Eq.~13!
as

a i 11~E!5a i~E!1
1

b0
ln Pi~E!. ~14!

Since the trajectory in MD is determined directly by a for
scaling, it is a more natural choice to bias the effective fo
n(E) rather than potentiala(E). Detailed application of the
iteration scheme of Eq.~13! has been reported in our prev
ous study for a helix-coil transition of (Ala)8 system in a gas
phase@24#.

In the MUCA, overall sampling dynamics can be dete
mined by identifying stationary points ofF(E). When ther-
mal fluctuations are ignored in Eq.~11!, zeros ofG(E) cor-
respond to fixed points whose stabilities are analyzed b
linearization of G(E) as G(E).G 8(E* )(E2E* )1•••,
where

G 8~E!5
]G
]E

5
1

T̃T̃S
S ]T̃

]E
2

]T̃S
]E

D , ~15!

T̃S5TS(E)/T0, andT̃(E)51/n(E). Here we defined the ef
fective temperatureT̃(E) associated with the weightW(E),
which becomes the exact statistical temperature whena(E)
5Sm(E) @24#. Then, the stabilities of fixed points are dete
mined by

k~E* !5F ]T̃

]E
GF ]T̃S

]E
G21

. ~16!

SinceF is concave aroundE* for k,1, the sampling dy-
namics concentrates on stable fixed points, while it flo
away from unstable fixed points withk.1 due to a convex-
ity of F. Whenk51, tangential points represents a margin
stability. The stability analysis of Eq.~16! can be used to
characterize an essential dynamics of molecular dynam
simulation driven by Tsallis weight of Eq.~8!. In the Appen-
dix, we showed that fixed points determined by cross
points of the statistical temperatureTS(E) and Tsallis effec-
tive temperature play a critical role in overall sampling d
namics of MD driven by the Tsallis weight.

B. Simulated tempering

Previous analysis can be equally applied to the dynam
of b in the ST sinceb is a stochastic variable driven by MC
simulation. The underlying stochastic differential equati
~SDE! is derived to give the stationary solutionP(b)
;e2C(b) as

] tb5P~b!1z~ t !, ~17!

where the deterministic forceP(b) becomes
1-3
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P~b!52]bC~b!52U~b!1m~b!, ~18!

U(b) being the average energy andm(b)5]blnF(b). In
Eq. ~18!, we used a canonical thermodynamic relation ofA
5U2TS, S being the canonical entropy given b
2(]A/]T)V . As noted in the MUCA, the deterministic forc
P(b) has also two kind of contributions; system-depend
force U(b), which is not knowna priori, and weight-
contributed forcem(b), which is modulated by altering
F(b).

The uniform sampling inb space is accomplished by
random walk condition ofm(b)5U(b). This can be also
directly derived from the condition for a constantP(b) in
Eq. ~7! i.e., F(b)5L 21@V(E)#. By differentiating both
sides, we have

m5
]F~b!

]b
5

E dEV~E!e2bEE

E dEV~E!e2bE

5U~b!. ~19!

However,m(b) has to be determined with an iterative ma
ner sinceU(b) cannot be determined before the simulatio
Rearranging Eq.~18!, the iteration scheme form(b) is de-
rived as

m i 11~b!5m i~b!2P i~b!, ~20!

whereP i(b)5]blnPi(b) for i th iteration step. The iteration
scheme for the temperature weight is straightforward as

lnFi 11~b!5 lnFi~b!2 lnPi~b!. ~21!

In terms of our stochastic model, the sampling process of
can be also interpreted as the dynamical process conver
to a free Brownian motion inb space by canceling the de
terministic force iteratively.

The approximate form of the uniform sampling weig
FU(b) in b space can be simply calculated using vario
canonical samplings at different temperatures. By interpo
ing an average energy set@b i ,Ui # of the canonical sam
plings, Ui being U(b i), FU(b) is approximated as
exp$*db8U(b8)%. With the weightFU(b), the PDF of Eq.~6!
can be rewritten as

P~E!5E
0

`

db eD(b,E)/J, ~22!

whereD(b,E)5b@U2TS2A(b,E)#, A being the free en-
ergy density defined byE2TSm(E). Since bothU andSare
proportional to the number of particleN, the integral of Eq.
~22! receives contributions only from the neighborhood
the maximum integrandU(b* )5E in a thermodynamic
limit. By using the expansion ofD(b,E)5D(b* ,E)
2 1

2 s(b2b* )21•••, Eq. ~22! can be rewritten as

P~E!.eD(b* ,E)E
2b*

`

dbe2sb2/25A2p/s eD(b* ,E),

~23!
02110
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where s5u]U/]bub* 5kBT* 2CV(T* ), CV being the spe-
cific heat of the system. The lower limit of above integral h
been replaced by2` since s}N. Denoting D(b* ,E)
5 lnV(E)2S@U(b* )#/kB50, we conclude that the uniform
sampling inb space brings about the uniform distribution
the energy space.

C. Uniform sampling weights of MUCA and ST

The condition for a uniform sampling inb space, i.e.,m
5U(b), has a fundamental relationship with a uniform sa
pling condition in the energy space. Denotinga(E)
52 ln L@F#/b0, the force scaling functionn(E) can be re-
written as

n~E!5
1

b0

E dbbe2bEF~b!

E dbe2bEF~b!

5
1

b0
^b&F , ~24!

where^•••&F means the Boltzmann weighted average w
respect to the distributionF. The effective inverse tempera
ture of Eq.~24! can be further identified as

n~E!5b* /b0 ~25!

by applying the steepest descent integral around the sta
ary point b* as *0

`dbbne2bE1 ln F(b)

5e2b* E1 ln F(b* )I n(b* ), where I n5*0
`dbbne2sm(b2b* )2/2

and sm5u]m/]bub* . Here, b* is determined by E
5m(b* ) corresponding to the stationary condition of th
integrand ofI n . Applying the uniform sampling condition in
b space ofm5U(b), the weight for a uniform energy sam
pling is obtained as

n~E!5U21~E!/b0 , ~26!

which can be approximated by interpolating average ene
set @Ui ,b i /b0#. Note that the uniform sampling weight i
the energy space is complementary with the uniformb
weight via the same functional relationship ofb andU(b).
The condition of Eq.~26! has been also demonstrated in o
previous study with the staircase temperature modulation
Eq. ~11! @23#. Independently, Teradaet al., also reach the
same conclusion that the multicanonical weight can be de
mined by interpolating maximum probability points of th
canonical samplings at different temperatures@25#. Note that
the maximum probability energy becomes identical toU(b)
in a thermodynamic limit.

IV. NUMERICAL COMPUTATIONS AND DISCUSSIONS

A. Implementation of simulated tempering into MD

The simulated tempering algorithm can be implemen
into MD by considering the force scaling function as an
fective inverse temperature parametrizing the expanded
sembles. The force scaling functionn(E) in Eq. ~10! reduces
to a temperature scaling factor when it is a constant
n(E)51/l (l.0) @23,24#. In this case, the PDF of Eq.~6!
1-4
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FIG. 1. ~Color! ~a! Temperature trajectories o
force biased iteration of Eq.~28!: direct ~green!
and average energy guided~red!. ~b! Approxi-
mate average energyUH

i (T) as a function of an

iteration. The temperature weightm̃(T) is deter-
mined asUH

i (T)/kBT2.
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reduces to a canonical one at a scaled temperatureTl

5lT0 asP(E)5V(E)e2E/kBTl denotinga(E)5E/l. Thus,
the expanded ensembles can be constructed in the sam
process of the MUCA by consideringn(E) as a dynamical
variable parametrizing the canonical subensembles of
temperatureT0 /n(E). However, we need a further conside
ation since the inverse relation ofb andT makes a sampling
biased toward low-temperature region asP(T)
5P(b)u]b/]Tu;1/T2 even though we can realize a unifor
sampling in b space. To avoid an unfavorable bias, it
required to perform the simulation in the temperature sp
directly rather thanb space.

This proceeds with a variable transformation fromb to T
in previous stochastic formulation. By defining a new effe
tive potential C̃(T)5A(T)/kBT2 ln F̃(T), the governing
SDE is transformed to
02110
ing

e
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] tT5P̃~T!1z~ t !, ~27!

whereP̃(T)5Ũ(T)2m̃(T), Ũ andm̃ beingU(T)/kBT2 and
2] ln F(T)/]T, respectively. The iteration scheme in th
temperature space is obtained as

m̃ i 11~T!5m̃ i~T!1P̃ i~T!, ~28!

whereP̃ i(T)5] ln Pi(T)/]T. The simulation proceeds with
combinatorial fashion: particle displacements are genera
by the MUCA with a fixedn5T0 /T, while temperature tran-
sitions fromT to T8 have been tried with the acceptance ra
of

A~T→T8!5min@1, e(b2b8)EF̃~T8!/F̃~T!#, ~29!
1-5
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whereF̃(T)5exp$2*Tm̃(T8)dT8%.
Denoting a random walk condition in the temperatu

space i.e.,m̃5Ũ(T), the convergence of Eq.~28! can be

greatly accelerated by replacingm̄ i by an approximation of

Ũ(T) i.e., ŨH
i 5UH

i (T)/kBT2, in which UH
i (T) is an ap-

proximate internal energy. For each iteration,UH
i (T) is au-

tomatically updated by taking an average of all previous
ergy data in each temperature histogram. Since the weig
guided by the average energyUH

i (T) from the beginning of
the simulation, preliminary simulations, which are essen
in conventional ST, are not required in our iteration schem
The detailed procedure of our simulation scheme is outli
as follows. ~i! Perform the simulation at an arbitrary tem
peratureT0 with an initial weightF 0(E)51 @m0(E)50#.
Since there is no restriction for a selection of trial values
temperature transitions, we used a discrete temperatur
dividing a temperature space into grids with a size
(Tmax2Tmin)/NG , NG being the number of the expande
ensembles. The temperature sampling has been restricte
@Tmin ,Tmax# by applying the acceptance ratio as

FIG. 2. Accumulated probability density functions for~a! the
temperature and~b! energy.
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A~T→T8!5H Tmin for T8<Tmin

Eq. ~29! for Tmin<T<Tmax

Tmax for T.Tmax.

~30!

The temperature transitions are tried every predetermi
time steps ofNT . ~ii ! By constructing the temperature histo
gram, calculate the deterministic forceP̃ i(T)5] ln Pi(T)/]T
and approximate internal energyUH

i (T). ~iii ! Update the
weight everyNI time steps using the scheme of

m̃ i 11~T!5H ŨH
i ~T!1P̃ i~T! for T1

i <T<T2
i

ŨH
i ~T! for otherwise,

~31!

where T1
i and T2

i are determined byPi(T1)<Pth and
Pi(T2)>Pth , respectively,Pth being the threshold value to
maintain a statistical accuracy of the simulation.~iv! Repeat
steps ~i!–~iii ! for a certain number of iterations until th
broad distribution is obtained in the temperature space.
an automatic determination of the weight, four paramet
NG , NT , NI , andPth have to be determined before startin
the simulation.

B. Simulation of folding transition of Met-Enkephalin

The performance of our method has been examined
folding simulation of Met-Enkephalin consisting of five res
dues Tyr-Gly-Gly-Phe-Met in a gas phase whoseN and C
termini were blocked with acetyl andN-methyl groups, re-
spectively. Since Met-Enkephalin is very simple, but a no
trivial system, showing a folding transition even in a g
phase, it has been widely used to test a performance of m
sampling algorithms@14,18,26#. The simulation was per-
formed by the program PRESTO@22,27# and the force-field
parameters were taken from all-atom version of AMBE
@28# with 1 fs time step and no cutoff. The simulation h
been performed withNT5100 time steps,NG5100, and
Pth51023. The sampling region in the temperature spa
has been restricted by boundary conditions ofTmin5200 K
andTmax5700 K. The update of weight has been done ev
NI523105 time steps. All hydrogen bonds have been fix
by SHAKE constraints.

As observed in Fig. 1~a!, the temperature sampling show
a typical random walk covering an entire temperature spa
which leads to a broad sampling in the energy space plo
in Fig. 2~b!. The advantage of using the average ene
guide of ŨH

i is clearly seen in convergence rates of t
guided ~red! and direct~green! iterations, in which the re-
placement ofm̃ i by ŨH enables a dramatic enhancement
an initial stage of the simulation. The approximate avera
energyUH

i (T) in the average guided simulation has be
plotted in Fig. 1~b! as a function of the iteration. The weigh
m̃ i(T) at each iteration corresponds to a scaled internal
ergy ofUH

i (T)/kBT2. The weight at 1 ns, in which an entir
energy range has been sampled roughly, becomes al
identical to the final convergent one at 15 ns. It should
emphasized that the weightm̃(T) has been determined fully
1-6



v-

e

STOCHASTIC FORMULATION OF SAMPLING DYNAMICS . . . PHYSICAL REVIEW E 69, 021101 ~2004!
FIG. 3. ~Color! ~a! PST(E):
reconstructed canonical PDFs e
ery 20 K from 200 K to 700 K.
Above 400 K, conventional MD
results coincide withPST, while
they begin to depart fromPST in
the transition and low-temperatur
regions.~b! Average energyU(T)
and specific heatCV(T). The con-

vergent weightm̃(T) is identified
with U(T)/kBT2. For a compari-
son, we plottedU(T) and CV(T)
obtained from the MUCA by the
reweighing.
it
-
i

h
lin
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h
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rre-
automatically by dividing a temperature space into grids w
a size of (Tmax2Tmin)/NG55 K. The attempts to automa
tize the iteration procedures in the MUCA have been tried
Monte Carlo@29# and molecular dynamics algorithm@24#.
However, to the best of our knowledge, the same attempt
not been tried to the simulated tempering. Since the samp
energy range increases exponentially as a function of a
of the system, full automatic determination of the weig
might play an important role in the applications of ST
large size systems.

The accumulated probability density functions for t
temperature and energy are plotted in Figs. 2~a! and 2~b!,
respectively. Except for boundary regions whereP(T) shows
unusual peaks due to an interruption of probability curre
beyond Tmin and Tmax, P(T) shows a broad distribution
over entire temperature space, which also realizes a b
sampling in the energy space in Fig. 2~b!. The less sampled
02110
h

n

as
g

ze
t

s

ad

region of P(E) around 40 kcal/mol is due to a relative ra
events of the folding transitions in Met-Enkephalin. No
that the sampling energy region ofP(E) around 40 kcal/mol
in Fig. 2~b! exactly corresponds to the energy region of t
transition temperature of 320 K by examining the profile
U(T) in Fig. 3~b!. Actually, a small bias inP(E) does not
affect a statistical accuracy of the simulation since tempe
ture transitions obey a detailed balance condition.

The canonical distributions in the ST can be reconstruc
by gathering energy data of the same temperature in
simulation trajectory. In Fig. 3~a!, we plot the reconstructed
canonical PDFs ofPST ~red line! and typical canonical PDFs
~point! obtained from conventional canonical MD. The di
tributions ofPST are nearly Gaussian at temperatures ab
and belowTtrans5320 K in Fig. 3~a!, implying the existence
of well-defined conformational classes. Here, the transit
temperature has been identified by the temperature co
1-7
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sponding to the maximum peak in the specific heat in F
3~b!. Above 400 K, typical canonical PDFs exactly coinci
with PST(E). However, due to a quasiergodicity, the PDFs
canonical MD show a significant deviation fromPST(E) in
the transition and low-temperature regimes of Fig. 3~a!. Note

FIG. 4. ~Color! ~a! The statistical temperatureT̃S(E) and Tsallis

effective temperatureT̃q(E) with e50.7E0 , E0 being the average
energy of the canonical MD atT0. ~b! Deterministic forcesGq(E)
~Solid lines!. Fixed pointsE* correspond to zeros ofGq(E). For a
comparison, the Tsallis PDFs~Lines points! are magnified by ten
times.~c! Ratio of sq /s0 with respect toq.
02110
.

f

that PST(E) from 280 K to 340 K shows a characterist
broadening of the distributions, showing the existence of t
kinds of conformational states. The characteristic dynam
of the folding transition is clearly identified by the slop
variation inU(T) corresponding to the maximum peak of th
specific heatCV(T) in Fig. 3~b!. Similar maximum peaks in
CV have been also observed in multicanonical Monte Ca
simulation @18,29# and random walk simulation@26# with
different force fields.

To check the accuracy of the ST, we compared thermo
namic quantities ofU(T) andCV(T) of the ST with those of
the MUCA in Fig. 3~b!. For this purpose, we performed tot
10 ns MD simulation using repeated short time multicano
cal samplings of 43105 time steps with the update schem
of Eq. ~13!. Since the weights of each iteration step a
slightly different, all simulation data has been joined to r
construct the canonical ensembles via the multiple histog
technique @30#. Except for very low-temperature region
around 200 K, both results of the GEMs exhibit a go
agreement for an entire temperature space, which valid
our theory. However, the usefulness of our iteration sche
for the simulated tempering needs to be tested for lar
systems to test a scalability of the algorithm with respec
the size of system.

V. CONCLUSIONS

In conclusion, the multicanonical sampling has be
shown to be equivalent to the simulated tempering apply
the expanded ensembles formalism. The simulated tempe
is identified as the multicanonical sampling with the gen
alized weight determined by a Laplace transform of the te
perature weight. The characteristic sampling dynamics
both generalized ensemble methods has been verified u
the stochastic interpretation of the sampling process in
energy and temperature spaces modeled by a Langevin e
tion. We showed that the iterative refinements of the weig
in the GEMs are equivalent to the dynamical processes c
verging to a free Brownian motion via the cancellations
deterministic forces in Langevin equations. Our study a
reveals that the uniform sampling weight in the energy sp
is complementary with the uniform temperature weight v
the same functional relationship ofT and U(T). From the
stochastic models, we derive robust force biased itera
schemes, which enables full automatic determinations of u
form sampling weights.
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APPENDIX: ESSENTIAL DYNAMICS OF MOLECULAR
DYNAMICS SIMULATION DRIVEN BY TSALLIS

WEIGHT OF EQ. „8…

Molecular dynamics simulation driven by the Tsall
weight proceeds by introducing the Tsallis effective poten
aq(E) as
1-8
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aq~E!52
1

b0
ln Wq~E!

5
1

b0~q21!
ln@12~12q!b0~E2e!#, ~A1!

where the parametere is introduced to guarantee a positiv
ness ofWq @17#. Until now, the successful applications of th
Tsallis weight for conformational samplings have been c
sidered due to the smoothing of the Tsallis effective pot
tial. Indeed, the transformation of Eq.~A1! with a properq
reduces the magnitude of barrier heights of the original
tential E maintaining potential energy minima intact@19#.
However, the detailed connection of the potential modifi
tion to the sampling dynamics can be clearly understood o
by taking into account an influence ofV(E) since the sam-
pling depends not only the weight, but also the density
stateV(E) of the system. This can be done by the fixed po
analysis of the statistical temperatureTS(E) and the Tsallis
effective temperature of

T̃q51/nq~E!511~q21!b0~E2e!. ~A2!

Note that the Tsallis effective temperatureT̃q(E) is a linear
function of E with q-dependent slope and definite point
(e,1).

When the Tsallis parametersq ande are explicitly given,
the fixed points are determined byT̃S(E* )5T̃q(E* ). By us-
ing the Taylor expansion of

T̃S~E!5h1j~E2E* !1•••, ~A3!

where h and j correspond toT̃S(E* ) and @T0CV* #21, re-
spectively,CV* being @]TS /]E#E*

21 , the deterministic force
Gq in Eq. ~12! reduces to

Gq~E!.
~q21!b02j

h2
~E2E* !1•••, ~A4!

where e5E* 2(h21)/(q21)b0. By assuming thatT̃S is
well approximated by a linear function aroundE* , the first-
n

N

02110
-
-

-

-
ly

f
t

order truncation in Eq.~A4! gives a stationary PDF of a
Gaussian centered atE* with q-dependent widthsq of

Pq~E!.
1

A2psq

expH 2
~E2E* !2

2sq
J , ~A5!

where

sq5s0h2/@12~q21!~b0 /j!#, ~A6!

s05kBT0
2CV* . When q approaches 1, the Tsallis effectiv

temperature reduces to the Gibbs-Boltzmann limit ofT̃q(E)
51 irrespective ofe. In the same limit,Pq(E) becomes the
canonical PDF for the temperatureT0 having the Gaussian
width s0. Note thatE* andCV* are identified as the averag
energy and specific heat of the system denoting a thermo
namic relation of]ESuE5E* 51/T0.

To examine Eq.~A5!, various samplings have been trie
with different parameters set ofq ande for T05600 K. For
the analysis, we approximated the statistical tempera
T̃S(E) by UTS(E)/T0, whereUTS is the average energy ca
culated from the ST in Fig. 3~b!. In Fig. 4~a!, the Tsallis
effective temperatures have been plotted withT̃S(E) for dif-
ferent values ofq with maintaininge50.7E0 , E0 being the
average energy of the canonical MD atT0. Since k(E* )
,1 for all cases ofq, the Tsallis PDF shows a typical Gua
sian distribution centered atE* in Fig. 4~a!. As can be seen
in Fig. 4~b!, the deterministic force is greater~smaller! than
zero for E,E* (E.E* ) biasing the sampling towardE* .
Note that maximum probability points of the Tsallis PDF
are exactly corresponding to zeros of the deterministic for
in Fig. 4~b!. In present simulations, the fixed points are n
merically identified as the average energies ofE*
5*dE8Pq(E8)E8. The value ofj has been determined a
(q21)b02h2p(E* ) by computing the slopep(E* ) of the
deterministic force in Eq.~A4! with h5T̃q(E* ). Numeri-
cally determined ratio ofsq /s0 shows a good agreemen
with theoretical predictions of Eq.~A6! in Fig. 4~c!, which
validates our stochastic model.
.
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