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Stochastic formulation of sampling dynamics in generalized ensemble methods
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The fundamental relations of the sampling process in the multicanonical ensemble and simulated tempering
have been studied in the expanded ensembles formalism. The simulated tempering is identified as the multi-
canonical sampling with the generalized weight determined by a Laplace transform of the temperature weight.
The characteristic dynamics of both sampling methods has been verified in the stochastic formulation of the
sampling process. Our study gives a necessary and sufficient condition for the weights to realize a uniform
sampling in the energy and temperature spaces. Based on the stochastic model, robust force biased iteration
schemes have been proposed to allow automatic determinations of uniform sampling weights.
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[. INTRODUCTION ever, in spite of many impressive achievements, the funda-
mental dynamics of the GEMs has not been clearly under-
Potential energy surfaces of many important physical prostood since the weights, which play a critical role in the
cesses such as protein foldifg], cluster melting[2], and  sampling, are not knowa priori. Usually, the determination
spin glasse$3] are dominated by a large number of local of the weights requires an iterative procedure, which is
minima separated by high-energy barriers. Thus conventionaometimes very tedious and time consuming in large size
Monte Carlo or molecular dynamidgdD) simulation will  systemg15].
become trapped in one of local energy basins and fail to In the present study, we reveal that uniform sampling
sample thermally accessible phase space. To overcome thigights of the MUCA and ST are determined by the same
quasiergodicity occurring in the simulation of rough energyfunctional relationship characterizing the average energy and
landscapes, several sampling algorithms have been propostperature. Our finding relies on a unified formulation of
during the past decadet—10. These include the parallel the sampling process in the MUCA and ST within the ex-
tempering or replica exchange methptl, umbrella sam- panded ensembles treating both energy and temperature as
pling [5], generalized ensembles methods of multicanonicatlynamical variables. The sampling process of the MUCA has
sampling[6,7] and simulated temperingT) [8,9], and ran-  been shown to be equivalent to the one of the ST by relating
dom walk algorithm[10]. Among them, the generalized en- the temperature weight to the multicanonical weight. The
semble method$GEMs) have been widely applied to bio- simulated tempering is identified as the multicanonical sam-
molecules simulations as effective tools to alleviate multiplepling with the generalized weight determined by a Laplace
minima problem with substantial enhancements of confortransform of the temperature weight. Next, the characteristic
mational sampling$11]. sampling dynamics of the GEMs has been analyzed in terms
The characteristic feature of these generalized ensembtEf a Langevin stochastic process by considering the sampling
methods is that they use non-Boltzmann sampling weightsprocess as a stochastic diffusion on the energy and tempera-
which are adaptively modified to smooth the PES for a uniture spaces. Our stochastic models reveal that the iterative
form sampling in the energy and temperature spaces. Thefinements of the weights in the GEMs correspond to the
multicanonical samplingMUCA) [6] or an equivalent en- dynamical processes approaching a free Brownian motion in
tropic sampling 7] generating a random walk on the energy the energy and temperature spaces via the cancellations of
space has been proved to be very effective in studying firstdeterministic forces of governing Langevin equations. Based
order phase transitions of spin systefi®] and folding on this analysis, we propose robust force biased iteration
problems of small peptide systemi$3]. Another effective schemes to allow an automatic determination of uniform
simulation technique of the GEMs is the §3] or expanded sampling weights in the GEMs without any intervention in
ensemble methofP], which samples states with a uniform the simulation. The validation of our theory has been tested
distribution in the temperature space. The similarities andn a folding simulation of five residues peptide of Met-
effectiveness of various generalized ensemble methods haenkephalin.
been examined for protein folding simulatiof4]. How- In Sec. Il, a unified formulation of the sampling process in
the MUCA and ST has been presented within the expanded
ensembles. The formal equivalence of the MUCA and ST has
*Corresponding author. Email address: jgkim@jbirc.aist.go.jp been demonstrated by relating the temperature weight to the
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multicanonical weight. In Sec. Ill, the characteristic sam- min[ 1 e—,B’E(x’)-%—ﬁE(x)}-(lB/)/]_—(18)]_ (4

pling dynamics of the GEMs has been investigated in the '

stochastic formulation of the sampling process. Novel itera-The acceptance ratio of Eq4) reduces to Eq(2) when

tion schemes have been proposed for the determination @f(yy—g(x’), while it is the same as the Metropolis criterion

uniform sampling weights in the energy and temperaturgyin B=pB'. The occupation probability of the system in

spaces. In Sec. 1V, detailed numerical results and discussiorag B) is determined by taking into account the density of

are presented in a folding simulation of Met-Enkephalin. Fi'sta{te asP(E, B)=Q(E)e FEF(B)/IE.

nally, a conclusion and brief summary are added to Sec. V. oy pasic idea is to regard the expanded ensembles of Eq.
(3) as the multicanonical sampling associated with a non-

One of the critical differences of the MUCA and ST is a
dynamical variable in the sampling process. In the MUCA, E(N,V)=f dE Q(E)W(E), (5)
the energy is a dynamical variable, while the temperature

plays the same role in the ST. Thus, to formulate the MUCA ) i
and ST in a unified form, we need new ensembles treatin herez/g(EE)zﬁ[f] is a Laplace transform of defined as
both energy and temperature as dynamical variables simulta 98 € “~#(B). Then, the probability density function
neously. For this purpose, we borrowed a key idea from " DP) for the energy is given by

Lyubartsev’'s expanded ensembles formalism. In the original
paper[9], Lyubartsevet al., have constructed the canonical
expanded ensembles by considering the reciprocal tempera-

_ - where®(E)=a(E) — TySn(E), Sn(E) being the microca-
ture B;=1/kgT; as a parameter for the subensembles, whic . , m m !
gives the expanded partition function of nonical entropy defined bigIn Q(E). Here we defined the

multicanonical potentiale(E)= —1/8,In W(E), B, being
the arbitrarily defined temperature. The physical implication
E(N,V)=2 Q(N,V,B8)F, (1)  of ®(E) is the effective free energy density associated with
! W(E), leading to the partition function ofZ(N,V)
= [dEe Fo®(E),
On the other hand, the PDF for the inverse temperature is
pbtained by integratin@’(E, 8) with respect to an energy as

P(E)=Q(E)L[F)IE=e Fo®E)/5, (6)

whereQ(N,V, B;) denotes the canonical partition function at
Bi . For each subensemblethe positive weightF; has been
assigned to adjust a relative population. Usually, two types o
MC moves occur in the expanded ensembiés:canonical
sampling at a fixed value g8; and (2) trial transition be-
tween neighborings; . The transitions between the suben-
sembles take place with the acceptance ratio of

P(B)=L[Q]FAB)IE=e"YP)E, (7)

where L[ Q] is the Laplace transform of the density of state
defined ag'dBQ(E)e 5, andW () is the effective poten-

min[l,e(ﬁi—ﬁj)Ej:j 1F]. 2) tial of BA(B) —InF(B), A(B) being the Helmholtz free en-

ergy. The interesting observation in E(7) is that the

Then, the occupation probability d?;=exp{—BA}F/E, Laplace transform of)(E) plays a role of the density of
BiAi=—InQ(N,V,5), can be determined by accumulating a state in the temperature sampling. In a different way, Hans-
histogram of visits toB; state. Once a broad sampling is mannet al. also pointed out that the temperature weight is
achieved between the subensembles with a high statisticeglated to a Laplace transform of the density of state as
free energy difference between the subenserhbied refer- F~*=L[Q] when the sampling in the temperature space
ence 0 can be calculated ag;A;—BoAg=InPy/P;  becomes unifornjl4].

—In 7, /]—'j . However, the temperature weiglf is not The reformulation of the MUCA and ST in the expanded
known a priori and has to be determined by preliminary ensembles provides a clear picture on how does the tempera-
iterative simulations before long production run. ture weight invoke a non-Boltzmann weight in the energy

In the present study, the expanded ensembles formalispace. Conversely, an arbitrary energy weight can be decom-
has been generalized to a continuous limiBpby introduc-  posed to a mixture of the canonical ensembles parametrized
ing the temperature weight functigf(8) as by a temperature weight. The Gibbs-Boltzmann weight

Wgg=e€ P is given by aé function distribution F(3)
— _ =68(B—Bo) (Bo>0). On the other hand, Lyubartsev’s ex-
:(N’V):f f dBdE Q(E)e EF(B), 3) panded ensembles are reconstructed HyB)=2,;F; (B8
—Bi). Recently, the Tsallis weight proposed in nonextensive
where we used the relatioQ(N,V,8)=fdEQ(E)e #5,  statistical mechanicgl6] has been applied to biomolecules
Q(E) being the density of state of the system. In the consimulations as one effective tool improving conformational
tinuous expanded ensembles, the system with the configurgampling efficiency{17—20. In contrast to the exponential
tion (x,B) is populated by a product of the energy and tem-suppression of\5g, the Tsallis weight shows an asymptotic
perature weights asP(x,B)=e PEWF(B)/E. From a algebraic decaying in the energy space as
detailed balance condition, the transition betwerB} and
(x',B") occurs with the probability of Wo(E)=[1—(1-q)BoE)] Y29, (8)
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whereq is the Tsallis entropy index. Dynamical origin of the wherei means the iteration std@4]. Notifying thatv(E) is
Tsallis weight has been related to the temperature fluctugthe external force driven by the weight in E42), the sam-
tions with y? distribution[21]. This can be easily verified in pling in MUCA can be interpreted as the dynamical process
our expanded ensembles formulation by denoting a followapproaching a free Brownian motion via the iterative cancel-

ing transformation of lations of G(E). Conventional potential biasing iteration
schemd22] is obtained by integrating both sides of E#3)
Wy(E)=A(a,p) L[ BPexp{aB}]= L[ Fy] 9  as
with p=1/(g—1)—1 (p>—1) and 14=(1—q)B,. Here _ _ 1 _
A(a,p)=[1T'(1+p)](—a)**P, ' being the Gamma func- a'"YE)=a'(E)+ ﬁ_oln P'(E). (14)

tion, and 7 is the Tsallis temperature weight. Note that the

dynamical origin of the Tsallis weight is naturally involved sjnce the trajectory in MD is determined directly by a force
with temperature fluctuations in our formulation via the gcaling, it is a more natural choice to bias the effective force

transformation oMW(E) = L[ F(B)]. v(E) rather than potentiak(E). Detailed application of the
iteration scheme of Eq13) has been reported in our previ-
Ill. STOCHASTIC FORMULATION OF GENERALIZED ous study for a helix-coil transition of (Alg)system in a gas
ENSEMBLE METHODS phaseg[24].

In the MUCA, overall sampling dynamics can be deter-
mined by identifying stationary points db(E). When ther-
Since the MUCA can be considered as a canonical samnal fluctuations are ignored in E¢L1), zeros ofG(E) cor-
pling associated with the multicanonical potentiglE) in  respond to fixed points whose stabilities are analyzed by a
Eq. (6), the energy trajectory can be generated to sample thghearization of G(E) as G(E)=G'(E*)(E-E*)+.--,
ensemble ofW(E) by constant temperature MD with a where
scaled Newton’s equatigr22]

A. Multicanonical sampling

(B _0e®) ey, (10

G'(E)=
Pi=" g 9E

— (15

JE JE

G 1 (fr frs)
JE Tr:f's '

whereq;, p;, andf; correspond to the coordinate, momen- Ts=Ts(E)/To, andT(E)= 1/v(E). Here we defined the ef-
tum, and force of the particle on the potential energf,  fective temperaturd (E) associated with the weight/(E),
respectively. Herey(E) is the force scaling function, which which becomes the exact statistical temperature wingf)
reduces tov(E)=1 in the canonical ensemble ai(E) =Sn(E) [24]. Then, the stabilities of fixed points are deter-
=E. The sampling dynamics of MUCA can be mapped intomined by
a one-dimensional stochastic diffusion on the external poten-

tial ®(E) modeled by a Langevin equation [#3]

HE=G(E)+ VkgTq (1), (11

Fin -t
JE

iTs
JE

(16)

k(E*)=

Since® is concave aroun&* for k<1, the sampling dy-

namics concentrates on stable fixed points, while it flows
G(E)=—9e®(E) = v((E)— v(E) (12) away from unstable fixed points withi>1 due to a convex-

ity of ®. Whenx =1, tangential points represents a marginal
andvg(E)=T,/T<(E), Ts(E) being the statistical tempera- stability. The stability analysis of Eq16) can be used to _
ture defined in microcanonical ensembld a8,,,/9E] . In characterize an essential dynamics of molecular dynamics
Eq. (11), thermal fluctuations are approximated by the unbi-Simulation driven by Tsallis weight of E¢8). In the Appen-
ased & correlated Gaussian white noise witlf(t)Z(t')) dlx_, we showed_th_at fixed points determined py crossing
=248(t—t'). The stationary PDF of Eq11) is obtained as Points of the statistical temperatuT@(_E) and Tsallis e_ffec-
P(E):eﬁojg(E’)dE’ by considering a Fokker-Planck equa- tive Femperature.play a critical rolle in _overaII sampling dy-
tion associated with a Langevin equation. namics of MD driven by the Tsallis weight.

In Eq. (12), the deterministic forc&(E) has two contri- ) .
butions, which are the system-dependent entropic force B. Simulated tempering
vs(E) and weight-dependent force(E). The uniform en- Previous analysis can be equally applied to the dynamics
ergy sampling in the MUCA is realized from a generation ofof g in the ST sinces is a stochastic variable driven by MC
a random walk wherG(E)=0 by coinciding »(E) with  simulation. The underlying stochastic differential equation

vs(E). However, the force scaling function(E) has to be (SDE) is derived to give the stationary solutioR(S)
determined iteratively since the microcanonical entropy~e=¥(8 gs

Sm(E) is not knowna priori. The rearrangement of E¢L2)
gives an iteration scheme for the force scaling function as aB=11(B)+ (1), (17)

where

VIYE)=V(E)+G(E), (13 where the deterministic forcH () becomes
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H(B)=—3dg¥(B)=—U(B)+ un(p), (18)  where o=|3U/dp| g =kgT**C\(T*), Cy being the spe-
cific heat of the system. The lower limit of above integral has
U(B) being the average energy and 3)=dgInF(B). In been replaced by-c since o=N. Denoting D(B8*,E)
Eq. (18), we used a canonical thermodynamic relationfof =InQ(E)—JU(B*)]/kg=0, we conclude that the uniform
=U-TS, S being the canonical entropy given by sampling in8 space brings about the uniform distribution in
—(0AldT)y . As noted in the MUCA, the deterministic force the energy space.
I1(B) has also two kind of contributions; system-dependent

force U(B), which is not knowna priori, and weight- C. Uniform sampling weights of MUCA and ST
contributed forceu(B), which is modulated by altering . _ L .
F(B). The condition for a uniform sampling i space, i.e.u

The uniform sampling in3 space is accomplished by a =U(B), has a fundamental relationship with a uniform sam-

i _ ; ling condition in the energy space. Denoting(E)

random walk condition ofu(B8)=U(B). This can be also B ) .
directly derived from the condition for a constaRtg) in  — N £[F1/Bo, the force scaling functiow(E) can be re-
Eq. (7) ie., F(B)=L '[Q(E)]. By differentiating both Wten as
sides, we have

1 f dppe PER(B)
dEQ(E)e PFE vB)=5 =5, \Blrr (24
—up). (19 ’ f dge FEF(B)

e aF(P) :f
B deQ(E)e—ﬁE

where(- - - ) - means the Boltzmann weighted average with
respect to the distributiorf. The effective inverse tempera-

However,u(B) has to be determined with an iterative man- ture of Eq.(24) can be further identified as

ner sinceU(B) cannot be determined before the simulation.
Rearranging Eq(18), the iteration scheme fou(RB) is de- _ %
rived as V(B)=E"Bo (25

41 oy iy TT by applying the steepest descent integral around the station-

whereIl'(8) = d4InP'(B) for ith iteration step. The iteration =e FETNTEI (B%), where | = [;dBp"e TulFFP2
scheme for the temperature weight is straightforward as  and o,=|du/dB|g«. Here, p* is determined byE

. ‘ , =u(B*) corresponding to the stationary condition of the

InF*L(B)=InF(B)—InP'(B). (21) integrand ofl , . Applying the uniform sampling condition in
B space ofu=U(RB), the weight for a uniform energy sam-

In terms of our stochastic model, the sampling process of Spling is obtained as
can be also interpreted as the dynamical process converging
to a free Brownian motion ir8 space by canceling the de- v(E)=U"YE)/B,, (26)
terministic force iteratively.

The approximate form of the uniform sampling weight which can be approximated by interpolating average energy
Fu(B) in B space can be simply calculated using variousset[U;,B;/Bq]. Note that the uniform sampling weight in
canonical samplings at different temperatures. By interpolatthe energy space is complementary with the unifofm
ing an average energy sgB;,U;] of the canonical sam- weight via the same functional relationship @fandU ().
plings, U; being U(B;), Fu(B) is approximated as The condition of Eq(26) has been also demonstrated in our
exp{fdB'U(B')}. With the weightF(B), the PDF of Eq(6) previous study with the staircase temperature modulation in
can be rewritten as Eqg. (12) [23]. Independently, Teradat al., also reach the
same conclusion that the multicanonical weight can be deter-
mined by interpolating maximum probability points of the
canonical samplings at different temperatuUr2s]. Note that
the maximum probability energy becomes identicalt@3)
whereD(B,E)= B[U—TS— A(B,E)], A being the free en- in a thermodynamic limit.
ergy density defined bl —TS,,,(E). Since bothJ andS are

proportional to the number of partiché, the integral of Eq. |V, NUMERICAL COMPUTATIONS AND DISCUSSIONS
(22) receives contributions only from the neighborhood of

the maximum integrandJ(8*)=E in a thermodynamic

P(E)= f:dﬂ ePBER)E, (22

A. Implementation of simulated tempering into MD

limit. By using the expansion ofD(B,E)=D(B*,E) The simulated tempering algorithm can be implemented
—10(B—B*)%+-- -, Eq.(22) can be rewritten as into MD by considering the force scaling function as an ef-
fective inverse temperature parametrizing the expanded en-
_oer e 7 —oB22_ 5T aD(B*.E) sembles. The force scaling functie(E) in Eq. (10) reduces
P(E)=e f_ﬁ*dﬁe 2mlo e k to a temperature scaling factor when it is a constant as

(23 v(E)=1/\ (A\>0) [23,24. In this case, the PDF of E¢6)
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reduces to a canonical one at a scaled temperafyre aT=T1(T)+ (1), (27)

=\TyasP(E)=Q(E)e *e" denotinga(E)=E/\. Thus,

the expanded ensembles can be constructed in the samplin ~ o~ ~ ~ ~ 2

process of the MUCA by considering(E) as a dynamical V\%(IereH_(rTz _TU(T)_'U‘(.T)’IU ??ld'“. beln.gU(T){]kBT and H

variable parametrizing the canonical subensembles of thtE Jin f(t) a1, respectlt\)/te Y. d e fteration scheme in the

temperaturd o/ v(E). However, we need a further consider- emperature space 1S obtained as

ation since the inverse relation gfandT makes a sampling ~ii1 ~ -

biased toward low-temperature region a<(T) p (M) = (T)+II(T), (28)

=P(B)|dB/dT|~1/T? even though we can realize a uniform o '

sampling in 8 space. To avoid an unfavorable bias, it is whereII'(T)=dIn P'(T)/dT. The simulation proceeds with a

required to perform the simulation in the temperature spaceombinatorial fashion: particle displacements are generated

directly rather thargB space. by the MUCA with a fixedv=Tq/T, while temperature tran-
This proceeds with a variable transformation frgito T sitions fromT to T’ have been tried with the acceptance ratio

in previous stochastic formulation. By defining a new effec-of

tive potential W (T)=A(T)/kgT—InZ(T), the governing

SDE is transformed to A(T-T)=min[1, eB~FERTYHT)], (29
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0.015 a) ! ! P(T' e Thmin for T'<Tmin
A(T-T)=4 Eq. 29 for TyinsT<Tnax (30
T max for T>Tax-
0.01 iy o B The temperature transitions are tried every predetermined

XJ@%W d time steps oNy. (ii) By constructing the temperature histo-

gram, calculate the deterministic foer(T)zaln P(T)/dT
and approximate internal enerdyy,(T). (iii) Update the
0.005 weight everyN, time steps using the scheme of

Accumulated probability

i UMM for Ti<T<T;
P =) (Y
Uy(T) for otherwise,

200 300 400 500 600 700 _ _ . A

Temperature (kelvin) where T; and T, are determined byP'(T;)<P;, and

: P'(T,)=Py,, respectivelyP,, being the threshold value to
P(E) —— maintain a statistical accuracy of the simulatiGn) Repeat

) steps (i)—(iii) for a certain number of iterations until the
o~ broad distribution is obtained in the temperature space. For
/"’ an automatic determination of the weight, four parameters

0.009

——y

Ng, N7, N,, andPy, have to be determined before starting
the simulation.

0.006 h%
J \ B. Simulation of folding transition of Met-Enkephalin

i&ﬁ The performance of our method has been examined in a
0.003 \ folding simulation of Met-Enkephalin consisting of five resi-

Accumulated probability

dues Tyr-Gly-Gly-Phe-Met in a gas phase whd¢end C
termini were blocked with acetyl and-methyl groups, re-
spectively. Since Met-Enkephalin is very simple, but a non-
20 40 60 80 100 120 140 160 trivial system, showing a folding transition even in a gas
Energy (kcal/mol) phase, it has been widely used to test a performance of many
sampling algorithmg14,18,28. The simulation was per-
FIG. 2. Accumulated probability density functions ft the  formed by the program PRESTQ2,27] and the force-field

temperature an¢b) energy. parameters were taken from all-atom version of AMBER
[28] with 1 fs time step and no cutoff. The simulation has
where?-"(T):exp{—fT[L(T’)dT’}. been performed witiN+=100 time stepsNg=100, and

: . P.,=10 3. The sampling region in the temperature space
Den(-)tlng a~random walk condition in the temperaturehé15 been restricted by boundary conditionsTgf,— 200 K
space i.e.u=U(T), the convergence of Eq28) can be  4nqT _ —700 K. The update of weight has been done every
greatly accelerated by replacing by an approximation of N,=2x 10 time steps. All hydrogen bonds have been fixed
U(T) ie., U,=UL(T)/kgT?, in which Ul,(T) is an ap- by SHAKE constraints.

proximate internal energy. For each iteratiaf},(T) is au- As observed in Fig. (B), the temperature sampling shows
tomatically updated by taking an average of all previous en@ tyPical random walk covering an entire temperature space,
ergy data in each temperature histogram. Since the weight }ghw.h leads to a broad sampling |n'the energy space plotted
guided by the average energ})L(T) from the beginning of n _F|g. Z(P)I The advantage 9f using the average energy
the simulation, preliminary simulations, which are essentia@uide of Uy is clearly seen in convergence rates of the
in conventional ST, are not required in our iteration schemeduided (red and direct(green iterations, in which the re-
The detailed procedure of our simulation scheme is outlinelacement ofu' by Uy enables a dramatic enhancement in
as follows. (i) Perform the simulation at an arbitrary tem- @n initial stage of the simulation. The approximate average
peratureT, with an initial weight F%(E)=1 [°(E)=0].  energyUy(T) in the average guided simulation has been
Since there is no restriction for a selection of trial values inPlotted in Fig. 1b) as a function of the iteration. The weight
temperature transitions, we used a discrete temperature ky/(T) at each iteration corresponds to a scaled internal en-
dividing a temperature space into grids with a size ofergy ofUy(T)/ksT% The weight at 1 ns, in which an entire
(Tmax— Tmin)/Ng, Ng being the number of the expanded energy range has been sampled roughly, becomes almost
ensembles. The temperature sampling has been restricted fgientical to the final convergent one at 15 ns. It should be
[Tmin» Tmax] By applying the acceptance ratio as emphasized that the WeigEI(T) has been determined fully
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automatically by dividing a temperature space into grids withregion of P(E) around 40 kcal/mol is due to a relative rare
a size of Tmax— Tmin)/Ng=5 K. The attempts to automa- events of the folding transitions in Met-Enkephalin. Note
tize the iteration procedures in the MUCA have been tried irthat the sampling energy region B{E) around 40 kcal/mol
Monte Carlo[29] and molecular dynamics algorithi24].  in Fig. 2(b) exactly corresponds to the energy region of the
However, to the best of our knowledge, the same attempt hasansition temperature of 320 K by examining the profile of
not been tried to the simulated tempering. Since the sampling (T) in Fig. 3(b). Actually, a small bias irP(E) does not
energy range increases exponentially as a function of a sizaffect a statistical accuracy of the simulation since tempera-
of the system, full automatic determination of the weightture transitions obey a detailed balance condition.
might play an important role in the applications of ST to  The canonical distributions in the ST can be reconstructed
large size systems. by gathering energy data of the same temperature in the
The accumulated probability density functions for thesimulation trajectory. In Fig. &), we plot the reconstructed
temperature and energy are plotted in Fig&) 2nd Zb), canonical PDFs oPg (red ling and typical canonical PDFs
respectively. Except for boundary regions whe(d) shows  (point) obtained from conventional canonical MD. The dis-
unusual peaks due to an interruption of probability currentgributions of P51 are nearly Gaussian at temperatures above
beyond T,in and Tyayx, P(T) shows a broad distribution and belowT,,,s=320 K in Fig. 3a), implying the existence
over entire temperature space, which also realizes a broaaf well-defined conformational classes. Here, the transition
sampling in the energy space in Figbp The less sampled temperature has been identified by the temperature corre-
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that Pg(E) from 280 K to 340 K shows a characteristic
broadening of the distributions, showing the existence of two
kinds of conformational states. The characteristic dynamics
of the folding transition is clearly identified by the slope
variation inU(T) corresponding to the maximum peak of the
specific heaC,,(T) in Fig. 3(b). Similar maximum peaks in
Cy have been also observed in multicanonical Monte Carlo
simulation [18,29 and random walk simulatioh26] with
q=1.004 different force fields.
To check the accuracy of the ST, we compared thermody-
04 I q=0.995 — namic quantities o) (T) andCy(T) of the ST with those of
q=0.975 the MUCA in Fig. 3b). For this purpose, we performed total
0.2 ' ' ' ' 10 ns MD simulation using repeated short time multicanoni-
40 60 8 100 120 140 160 180 cal samplings of %4 10° time steps with the update scheme
E (kcal/mol) of Eq. (13). Since the weights of each iteration step are
slightly different, all simulation data has been joined to re-
construct the canonical ensembles via the multiple histogram

T (E)/Tg

| [
q=1.004 ——

technique[30]. Except for very low-temperature regions
q=0.995 —*— - around 200 K, both results of the GEMs exhibit a good
q=0.975 —=— agreement for an entire temperature space, which validates

our theory. However, the usefulness of our iteration scheme
u for the simulated tempering needs to be tested for larger
systems to test a scalability of the algorithm with respect to
the size of system.

/k\ V. CONCLUSIONS

In conclusion, the multicanonical sampling has been
shown to be equivalent to the simulated tempering applying
80 100 120 140 160 180 the expanded ensembles formalism. The simulated tempering

E (kcal/mol) is identified as the multicanonical sampling with the gener-
alized weight determined by a Laplace transform of the tem-
NUMERICAL —5— | perature weight. The characteristic sampling dynamics of

/J both generalized ensemble methods has been verified using
2 () ] the stochastic interpretation of the sampling process in the
energy and temperature spaces modeled by a Langevin equa-
15 tion. We showed that the iterative refinements of the weights
‘ in the GEMs are equivalent to the dynamical processes con-
/ verging to a free Brownian motion via the cancellations of
1 r ai B deterministic forces in Langevin equations. Our study also
/ reveals that the uniform sampling weight in the energy space
05 | —— . is complementary with the uniform temperature weight via
/q//r the same functional relationship df and U(T). From the
o | I I I I I stochastic models, we derive robust force biased iteration
0975 098 0985 099 0.995 1 1.005 schemes, which enables full automatic determinations of uni-
form sampling weights.

Gy (®)

2.5 .

04/%0

Tsallis index q
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FIG. 4. (Color) (a) The statistical temperatufies(E) and Tsallis
effective temperaturd 4(E) with e=0.7E,, E, being the average .We yvould like to thank M.S. Yukihisa Wa'Fanabe, Yoshiaki
energy of the canonical MD & (b) Deterministic forcegj,(E) ~ Mikami, and Takashi Kurosawa for technical support. We
(Solid lines. Fixed pointsE* correspond to zeros @,(E). Fora  acknowledge that this work was supported by NEDO and
comparison, the Tsallis PDR&ines point are magnified by ten  METL.

times. (c) Ratio of o4/0 with respect tag.
APPENDIX: ESSENTIAL DYNAMICS OF MOLECULAR

DYNAMICS SIMULATION DRIVEN BY TSALLIS

sponding to the maximum peak in the specific heat in Fig. WEIGHT OF EQ. (8)

3(b). Above 400 K, typical canonical PDFs exactly coincide
with Ps(E). However, due to a quasiergodicity, the PDFs of  Molecular dynamics simulation driven by the Tsallis
canonical MD show a significant deviation froRs(E) in  weight proceeds by introducing the Tsallis effective potential
the transition and low-temperature regimes of Fig).3Note  a4(E) as
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1 order truncation in Eq(A4) gives a stationary PDF of a
ag(B)=— E'“ Wy(E) Gaussian centered Bt with g-dependent widthr, of
o N1-(1-q)ByE-a), (A1) b (E) p[ <E‘E*>2) (A5)
- ' = exp — ———1,
Bo(q—1) q 2may, 20y

where the parameteris introduced to guarantee a positive-
ness ofV, [17]. Until now, the successful applications of the where
Tsallis weight for conformational samplings have been con-
sidered due to the smoothing of the Tsallis effective poten- 5
tial. Indeed, the transformation of EGA1) with a properq oq=0on[1=(q=1)(Bo/§)], (AB)

reduces the magnitude of barrier heights of the original po-
tential E maintaining potential energy minima intact9].  5,=kgT5CY . When q approaches 1, the Tsallis effective

However, the de_ta|led connection of the potential mOd'f'Ca'temperature reduces to the Gibbs-Boltzmann Iimiﬁ'@(E)
tion to the sampling dynamics can be clearly understood onl

by taking into account an influence ©¥(E) since the sam-

pling depends not only the weight, but also the density o
state()(E) of the system. This can be done by the fixed point

analysis of the statistical temperaturg(E) and the Tsallis
effective temperature of

Tq=1vg(E)=1+(q—1)Bo(E—e). (A2)

Note that the Tsallis effective temperatu’r'g(E) is a linear

function of E with g-dependent slope and definite point of

(e€,1).

When the Tsallis parametegsand e are explicitly given,
the fixed points are determined By(E*)=T,(E*). By us-
ing the Taylor expansion of

TS(E)=n+E&E—E*)+- -, (A3)

where  and ¢ correspond toT'S(E*) and[ToC¥]17 2, re-
spectively,CY, being[&TslﬁE]g*l, the deterministic force
Gq in Eq. (12) reduces to

(Q-1)Bo—¢
2

Go(E)= (E-E*)+---, (A4)

where e=E* — (7—1)/(q—1)8,. By assuming thaf s is
well approximated by a linear function arougd, the first-

X irrespective ofe. In the same limitP4(E) becomes the
f;:anonical PDF for the temperatufig having the Gaussian
width . Note thatE* andCy, are identified as the average
energy and specific heat of the system denoting a thermody-
namic relation ofdgS|g—gx = 1/T,.

To examine Eq(A5), various samplings have been tried
with different parameters set gfand e for T;=600 K. For
the analysis, we approximated the statistical temperature

Ts(E) by Urg(E)/T,, whereU+s is the average energy cal-
culated from the ST in Fig. (8). In Fig. 4a), the Tsallis

effective temperatures have been plotted WitlE) for dif-
ferent values ofy with maintaininge=0.7E,, Ey being the
average energy of the canonical MD B§. Since «(E*)
<1 for all cases ofj, the Tsallis PDF shows a typical Guas-
sian distribution centered &* in Fig. 4(@). As can be seen
in Fig. 4(b), the deterministic force is greatémalley than
zero forE<E* (E>E*) biasing the sampling towarB*.
Note that maximum probability points of the Tsallis PDFs
are exactly corresponding to zeros of the deterministic forces
in Fig. 4b). In present simulations, the fixed points are nu-
merically identified as the average energies Bf
=JdE'P4(E")E’. The value of¢ has been determined as
(q—1)Bo— 7»°p(E*) by computing the slop@(E*) of the
deterministic force in Eq(A4) with n:?rq(E*)_ Numeri-
cally determined ratio ofry/o, shows a good agreement
with theoretical predictions of EA6) in Fig. 4(c), which
validates our stochastic model.

[1] M. Karplus and G.A. Petsko, Naturéondon 347, 631
(1990.

[2] J.P.K. Doye, D.J. Wales, and M.A. Miller, J. Chem. P89,
8143(1998.

[3] C. Maranas and C. Floudas, J. Chem. Pi&%.7667 (1992.

[4] D.D. Frantz, D.L. Freeman, and J.D. Doll, J. Chem. Pi®gs.

2769(1990; K. Hukushima and K. Nemoto, J. Phys. Soc. Jpn.

65, 1604(1996.
[5] J.P. Valleau, J. Chem. Phy&9, 4718(1993.
[6] B.A. Berg and T. Neuhaus, Phys. Lett. 287, 249 (1991).
[7] J. Lee, Phys. Rev. Let?1, 211(1993.
[8] E. Marinari and G. Parisi, Europhys. Lett9, 451 (1992.

Vorontsov-Velyaminov, J. Chem. Phy86, 1776(1992.

[10] F. Wang and D.P. Landau, Phys. Rev. L&®&, 2050(2001).

[11] U.H.E. Hansmann, Comp. Sci. Enfgj. 64 (2003.

[12] B.A. Berg and T. Celik, Phys. Rev. Le#9, 2292(1992.

[13] U.H.E. Hansmann and Y. Okamoto, J. Comput. Chém.
1333 (1993; N.A. Alves and U.H.E. Hansmann, J. Chem.
Phys.117, 2337(2002.

[14] U.H.E. Hansmann and Y. Okamoto, Phys. Rev5& 5863
(1996.

[15] S. Kumar, P. Payne, and M. Vasquez, J. Comput. CHem.
1269(1996.

[16] C. Tsallis, J. Stat. Phy&2, 479 (1988.

[9] A.P. Lyubartsev, A.A. Martsinovski, S.V. Shevkunov, and P.N. [17] I. Andricioaei and J.E. Straub, Phys. Re\6E 3055(1996); J.

021101-9



KIM et al. PHYSICAL REVIEW E 69, 021101 (2004

Chem. Phys107, 9117(1997. [25] T. Terada, Y. Matsuo, and A. Kidera, J. Chem. PHys3 4306

[18] U.H.E. Hansmann and Y. Okamoto, Phys. Rev5& 2228 (2003.

(1997. [26] N. Rathore, T.A. Knotts IV, and J.J. de Pablo, J. Chem. Phys.

[19] Y. Pak and S. Wang, J. Chem. Phy41, 4359(1999. 118 4285(2003.

[20] I. Fukuda and H. Nakamura, Phys. Rev6g 026105(2002. [27] K. Morikami, T. Nakai, A. Kidera, M. Saito, and H. Nakamura,

[21] C. Beck, Phys. Rev. LetB7, 180601(2001). J. Comput. Chem16, 243(1992.

[22] N. Nakajima, H. Nakamura, and A. Kidera, J. Phys. Chem. B[28] W.D. Cornell, P. Cieplak, C.I. Bayly, I.R. Gould, K.M. Merz,
101, 817(1997; U.H.E. Hansman, Y. Okamoto, and F. Eisen- Jr., D.M. Ferguson, D.C. Spellmeyer, T. Fox, J.W. Caldwell,
menger, Chem. Phys. Le®59, 321(1996. and P.A. Kollman, J. Am. Chem. Sot17, 5179(1995.

[23] J.G. Kim, Y. Fukunishi, and H. Nakamura, Phys. Rev6E [29] F. Yasar, T. Celik, B.A. Berg, and H. Meirovitch, J. Comput.
011105(2003. Chem.21, 1251(2000; 23, 1127(2002.

[24] J.G. Kim, Y. Fukunishi, A. Kidera, and H. Nakamura, Phys. [30] A.M. Ferrenberg and R.H. Swendsen, Phys. Rev. L&tf.
Rev. E68, 021110(2003. 2635(1988; 63, 1195(1989.

021101-10



